2,312 research outputs found

    The stress transmission universality classes of periodic granular arrays

    Get PDF
    The transmission of stress is analysed for static periodic arrays of rigid grains, with perfect and zero friction. For minimal coordination number (which is sensitive to friction, sphericity and dimensionality), the stress distribution is soluble without reference to the corresponding displacement fields. In non-degenerate cases, the constitutive equations are found to be simple linear in the stress components. The corresponding coefficients depend crucially upon geometrical disorder of the grain contacts

    Critical Dynamical Exponent of the Two-Dimensional Scalar Ï•4\phi^4 Model with Local Moves

    Get PDF
    We study the scalar one-component two-dimensional (2D) ϕ4\phi^4 model by computer simulations, with local Metropolis moves. The equilibrium exponents of this model are well-established, e.g. for the 2D ϕ4\phi^4 model γ=1.75\gamma= 1.75 and ν=1\nu= 1. The model has also been conjectured to belong to the Ising universality class. However, the value of the critical dynamical exponent zcz_c is not settled. In this paper, we obtain zcz_c for the 2D ϕ4\phi^4 model using two independent methods: (a) by calculating the relative terminal exponential decay time τ\tau for the correlation function ⟨ϕ(t)ϕ(0)⟩\langle \phi(t)\phi(0)\rangle, and thereafter fitting the data as τ∼Lzc\tau \sim L^{z_c}, where LL is the system size, and (b) by measuring the anomalous diffusion exponent for the order parameter, viz., the mean-square displacement (MSD) ⟨Δϕ2(t)⟩∼tc\langle \Delta \phi^2(t)\rangle\sim t^c as c=γ/(νzc)c=\gamma/(\nu z_c), and from the numerically obtained value c≈0.80c\approx 0.80, we calculate zcz_c. For different values of the coupling constant λ\lambda, we report that zc=2.17±0.03z_c=2.17\pm0.03 and zc=2.19±0.03z_c=2.19\pm0.03 for the two methods respectively. Our results indicate that zcz_c is independent of λ\lambda, and is likely identical to that for the 2D Ising model. Additionally, we demonstrate that the Generalised Langevin Equation (GLE) formulation with a memory kernel, identical to those applicable for the Ising model and polymeric systems, consistently capture the observed anomalous diffusion behavior.Comment: 14 pages, 4 figures, 6 figure files, to appear in Phys. Rev.

    Anisotropic diffusion limited aggregation in three dimensions : universality and nonuniversality

    Get PDF
    We explore the macroscopic consequences of lattice anisotropy for diffusion limited aggregation (DLA) in three dimensions. Simple cubic and bcc lattice growths are shown to approach universal asymptotic states in a coherent fashion, and the approach is accelerated by the use of noise reduction. These states are strikingly anisotropic dendrites with a rich hierarchy of structure. For growth on an fcc lattice, our data suggest at least two stable fixed points of anisotropy, one matching the bcc case. Hexagonal growths, favoring six planar and two polar directions, appear to approach a line of asymptotic states with continuously tunable polar anisotropy. The more planar of these growths visually resembles real snowflake morphologies. Our simulations use a new and dimension-independent implementation of the DLA model. The algorithm maintains a hierarchy of sphere coverings of the growth, supporting efficient random walks onto the growth by spherical moves. Anisotropy was introduced by restricting growth to certain preferred directions
    • …
    corecore